
Finally Executors for C++
A Base Concurrency Building Block

parallel Heidelberg 2018
March 2018

Detlef Vollmann
vollmann engineering gmbh

Finally Executors for C++
A Base Concurrency Building Block

Detlef Vollmann
vollmann engineering gmbh

Luzern, Switzerland

dv@vollmann.ch
http://www.vollmann.ch/

Part 0

Prelude

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 3



Kona Compromise

WG21 resolves that for this revision of the C++ standard (aka
”C++0x”) the scope of concurrency extensions shall be
constrained as follows:

• Include a memory model, atomic operations, threads,
locks, condition variables, and asynchronous future
values.

• Exclude thread pools, task launching, and reader-writer
locks.

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 4

Part 1

The Mission

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 5

Motivation: async

std::async ([](){ std::cout << "Hello "; });

std::async ([](){ std::cout << "World !\n"; });

• No concurrency

• No real control over execution agent

– launch::async and launch::deferred insufficient

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 6



Motivation: Pipelines

pipeline ::plan restaurant(

orders

| pipeline :: parallel(chef , 3)

| pipeline :: parallel(waiter , 4)

| end);

thread_pool pool;

pipeline :: execution work(restaurant.run(&pool ));

• Executors as building blocks for higher level abstractions

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 7

Motivation: Parallel STL

• Parallelism TS provides std::par execution policy
– to run algorithms in parallel

• Requires a mechanism to create parallel execution agents

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 8

Executor Requirements

• Run tasks

• Control some lifetime aspects

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 9



Part 2

All Beginning is ... Easy

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 10

Original Executor Interface

class executor{

public:

virtual ~executor ();

virtual void add(function <void()> closure) = 0;

virtual size_t

uninitiated_task_count () const = 0;

};

• (Not quite the original interface.)

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 11

Default Executor

shared_ptr <executor > default_executor ();

void set_default_executor(

shared_ptr <executor > executor );

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 12



Concrete Executors

• thread_pool

• serial_executor

• loop_executor

• inline_executor

• thread_executor

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 13

async

async(launch ::executor ,

[](){ std::cout << "Hello!\n"; });

• Uses default_executor
– we need just a little bit more to shutdown the

default_executor

async ([](){ std::cout << "Hello !\n"; });

• Could probably also use default_executor
– without breaking any existing code
– but still blocks on future destructor

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 14

async

thread_pool myPool;

async(myPool ,

[](){ std::cout << "Hello!\n"; });

• General way to launch a task on a specific executor

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 15



Motivation: Pipelines

pipeline ::plan restaurant(

orders

| pipeline :: parallel(chef , 3)

| pipeline :: parallel(waiter , 4)

| end);

thread_pool pool;

pipeline :: execution work(restaurant.run(&pool ));

• This can easily be implemented based on the initial
proposal

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 16

Mission Accomplished

• async problem solved
– Just some more detail work

• Accepted February 2014 by Concurrency SG into
Concurrency TS

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 17

Part 3

The Real Discussion Begins

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 18



Abstract Base Class

virtual void add(function <void()> closure) = 0;

• No template concept

• Not part of the type
– Not really important for functions

• Can cross binary interfaces

• Sometimes simply too costly

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 19

Part 4

More Requirements

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 20

Layers

User

programs

Library

components

Building

blocks
allocator

executor

async

.then
FlowGraph

Event
Loop

ASIO

pipelineParallel
Algorithms

Containers

Application

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 21



.then

• Proposed continuation .then also allows for an executor:

auto f = std::async ([](){

std::cout << "Hello "; });

f.then(myPool ,

[](){ std::cout << "World\n"; });

• Without executor, how does .then know on which
executor to run best?

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 22

ASIO

• ASynchronous Input/Output

• Wants to run continuation on thread where OS I/O
returns

• Wants to run concurrently or co-operative

• Wants to avoid overhead of futures

• Wants to run on user-defined executors
– with support for system specific asynchronous events
– signals/interrupts, timers, mailboxes, ...

• Grown out of lot of experience
– ASIO specific

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 23

Data Concentrator

RTExecutor rtExec (80);

pipeline ::plan process{

wrap(rtExec , input1) + input2

| validate

| store};

process.run(pool);

• Pipeline as concentrator
– Two producers, one filter, one consumer
– One producer has higher priority

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 24



More Info = Better ...

• There’s a lot of information about a task that may be useful for
an executor implementation
– relationship to spawning task
– long/short running
– blocking/non-blocking
– repetitions
– priority
– information return
– ...

• All very specific to some executors/domains

• Possibly nothing of them needs to be directly in the executor
interface

• But there must exist mechanisms for information transfer
– only some of them need to be known by intermediate mechanisms

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 25

wrap()

• wrap and get_associated_executor() from P0113
”Executors and Asynchronous Operations” seems to fit
the bill

• It’s a static type facility, so type of executor is available

• Independent from executor, so no overhead for executor
implementers
– part of Networking TS

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 26

Part 5

New Proposals

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 27



Executors and Async Ops

• ASIO based P0113 by Chris Kohlhoff

• executor and execution_context
– executor is a light-weight handle
– execution_context actually holds the threads and tasks
– execution_context can be used to wait on everything to shut

down.

• Proposed concrete executors:
– system_executor (like thread_executor)
– strand (like serial_executor)
– thread_pool (fixed size)
– loop_executor

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 28

Customization Points

• Continuation token
– direct continuation on same thread
– synchronization mechanism
– concurrency mechanism

• Execution interface
– dispatch()

– post()

– defer()

• get_associated_executor()
– generally required to use
– allows for arbitrary info from task to executor

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 29

Executors (R6)

class executor{

public:

template <class Func > void spawn(Func&& func);

};

• As template based concept
– with an interface for type erasing abstract base class

• P0008

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 30



Executor Traits

• ”An Interface for Abstracting Execution” (P0058)

• Required interface as traits

• Executor semantics
– concurrent
– parallel
– weakly parallel

• Future type

• Task starting

• Bulk task starting

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 31

Executor Traits

• P0058 is very specific for parallel algorithms

• Not a proposal for a specific executor interface

• Traits allow for implementation that’s not provided by
the executor
– bulk interface
– future based interface

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 32

Part 6

Status Quo 2016

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 33



Proposal Status

• Original (modified) Google proposal accepted into
Concurrency TS February 2014 (Issaquah)

• ASIO based proposal presented June 2014 in Rapperswil,
tentatively accepted as new base:
– remove N3785 from TS: SF-F-N-A-SA 6-7-5-2-0
– More work on N4046 for TS: 10-8-0-0-0
– Apply N4046 to TS without significant changes: 4-2-3-5-2

• R4 of the Google proposal was presented at SG1 meeting
September 2014 in Redmond
– (Re-)Start with Chris Mysen’s proposal? SF-F-N-A-SA 9-5-4-0-2

• ASIO based proposal part of Networking TS
• Traits (P0058) proposal discussed several times, no vote
• ASIO customization points (P0285) not discussed yet

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 34

Part 7

Rethinking

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 35

Layers

User

programs

Library

components

Building

blocks
allocator

executor

async

.then
FlowGraph

Event
Loop

ASIO

pipelineParallel
Algorithms

Containers

Application

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 36



More Info = Better ...

• There’s a lot of information about a task that may be useful for
an executor implementation
– relationship to spawning task
– long/short running
– blocking/non-blocking
– repetitions
– priority
– information return
– ...

• All very specific to some executors/domains

• Possibly nothing of them needs to be directly in the executor
interface

• But there must exist mechanisms for information transfer
– only some of them need to be known by intermediate mechanisms

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 37

Part 8

Still Something Else

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 38

Asynchronicity

• Blocking wastes resources

• No blocking waits for external events
– I/O, network, signals, timer, ...

• Asynchronous calls means concurrency
– sometimes preemptive

• No standard support for asynchronous functions yet
– Boost ASIO pre-standardized as networking TS
– resumable functions, .then, coroutines, ...

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 39



Coroutines

• Coroutines are an important part of asynchronicity

• ASIO works together with coroutines
– with explicit interface

• The coroutine await/yield approach doesn’t seem to mix
well with executors

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 40

ASIO Without Coroutines
void start() { // start async read;

socket.async_read_some(net:: buffer(data),

[] (size_t length) { handleRead(length ); });

}

void handleRead(size_t length) {

// start async write

net:: async_write(socket ,

net:: buffer(data),

[] () { handleWrite (); });

}

void handleWrite () { // start async read

socket.async_read_some(net:: buffer(data),

[] (size_t length) { handleRead(length ); });

}

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 41

ASIO With Coroutines

awaitable <void > echo(tcp:: socket socket

, await_context ctx) {

size_t length;

char data [128];

while (true) {

length = co_await socket.async_read_some(

net:: buffer(data), ctx);

co_await async_write(socket

, net:: buffer(data , length)

, ctx);

}

}

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 42



Part 9

Restart

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 43

Joint Proposal

• ”A Unified Executors Proposal for C++” (P0443 R0 for
Issaquah Nov 2016)

• With authors from all previous proposals
– with 16 different execution functions

• ”A Proposal to Simplify the Unified Executors Design”
(P0688 R0 for Toronto Jun 2017)

• After more work accepted by SG1 in Albuquerque Nov
2017
– heavy discussions in LEWG

• Still open issues

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 44

New Executor Interface

• Execution functions from P0443 R1 (Feb 2017)

• Too many for SG1

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 45



New Executor Interface

• Execution functions from P0443 R5 (Mar 2018)

void execute(F);

Future twoway_execute(F);

Future then_execute(F, Future );

void bulk_execute(F, size_t , PF);

Future bulk_twoway_execute(F, sixe_t , RF, PF);

Future bulk_then_execute(F, size_t , Future ,

RF , PF);

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 46

Executor Properties

• Executors have properties
– depending on the available syntactic interface
– depending on the semantics of the interface
– to provide extra information

• Direction
– oneway, twoway, then

• Cardinality
– single, bulk

• Blocking
– never_blocking, possibly_blocking, always_blocking

• Continuation, more work, progress, new thread, allocator

• User defined properties are possible

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 47

require/prefer

• require() and prefer() to get specific properties

auto newExec1 = require(oldExec ,

oneway ,

single ,

never_blocking );

auto newExec2 = prefer(newExec1 ,

outstanding_work );

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 48



One-Way Executions

• Two-way execution functions return a future
– possibly not std::future

• One-way execution functions don’t return any handle
– this is still being discussed

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 49

Part 10

Finally a Base

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 50

Demo

• Some real code

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 51



Presentation Downloads

• The slides and source code will be available at
http://www.vollmann.ch/de/presentations/

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 52

References

• Joint proposal:
P0443R5, Jared Hoberock, Michael Garland,
Chris Kohlhoff, Chris Mysen,
Carter Edwards, Gordon Brown
”A Unified Executors Proposal for C++”
http://www.open-std.org/JTC1/SC22/
WG21/docs/papers/2018/p0443r5.html

• Implementation and latest version of proposal
git://github.com/executors/issaquah 2016.git

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 53

References

• P0008R0, Chris Mysen,
”C++ Executors”
http://www.open-std.org/JTC1/SC22/
WG21/docs/papers/2015/p0008r0.pdf

• ”C++ extensions for Networking (N4588)”
http://www.open-std.org/JTC1/SC22/
WG21/docs/papers/2016/n4588.pdf

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 54



References

• P0058R1, Jared Hoberock, Michael Garland, Olivier
Giroux
”An Interface for Abstracting Execution”
http://www.open-std.org/JTC1/SC22/
WG21/docs/papers/2016/p0058r1.pdf

• P0285R0, Christopher Kohlhoff
”Using customization points to unify executors”
http://www.open-std.org/JTC1/SC22/
WG21/docs/papers/2016/p0285r0.html

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 55

References

• P0113R0, Christopher Kohlhoff
”Executors and Asynchronous Operations”
http://www.open-std.org/JTC1/SC22/
WG21/docs/papers/2015/p0113r0.html

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 56

Questions

• ???????????????????????????????????

parallel Heidelberg 2018 Finally Executors for C++ March 2018 Copyright c©2010-2018, Detlef Vollmann 57


